Third Homework, due July 23th

1. Solve the following differential equations:
I) $\frac{d u}{d t}=2+2 u+t+t u$
II) $(1+\tan y) y^{\prime}=x^{2}+1$
III) $\frac{d y}{d x}=y^{2}+1, y(1)=0$
IV) $y^{\prime}+2 y=2 e^{x}$
v) $x y^{\prime}+y=\sqrt{x}$
vI) $\left(x^{2}-2 y^{2}\right) d x+x y d y=0$
VII) $x y^{\prime}=y+2 x e^{-y / x}$
VIII) $y^{\prime}+y=\frac{1}{1+e^{2 x}}$
IX) $y^{\prime}=\frac{y^{3}}{1-2 x y^{2}}, y(0)=1$
x) $\frac{d y}{d x}=\frac{x^{3}-2 y}{x}$
2. The half-time of cesium-137 is 30 years. Suppose you have a 100 mg sample.
a) Find the mass that remains after 100 years
b) How much of the sample remains after 100 years?
c) After how long will only 1 mg remain?
3. A tank initially contains 1000 liters of a mix of water and salt. The initial amount of salt is 10 Kg . Water having a concentration of $0,1 \mathrm{Kg} / l t$ is introduced into the tank at a rate of $20 l t / \mathrm{min}$. The substance in the tank is mixing constantly, so that it is always homogenous, and flows out at the same rate ($20 l t / \mathrm{min}$). Let $Q(t)$ be the amount of salt in the tank at time t seconds. Write the equation describing the process and solve for $Q(t)$.
4. A curve in the first quadrant begins at the origin. The curve is so that the area below it between $(0,0)$ and (x, y), equals a third of the area of the rectangle that has those points as opposite vertices. Find the equation of this curve.
5. Solve the following differential equation: $x y^{2} y^{\prime}+y=x \cos (x)$.
6. Determine wether the series is convergent or divergent. If it is convergent find its sum.
a) $\sum_{n=1}^{\infty} \frac{e^{n}}{3^{n-1}}$
b) $\sum_{n=1}^{\infty} \frac{n}{n+100}$
7. Find the values x for which the series converges. Find the sum for those values of x.
a) $\sum_{n=1}^{\infty} \frac{x^{n}}{3^{n}}$
b) $\sum_{n=0}^{\infty} \frac{\cos ^{n} x}{2^{n}}$
